
Intel Infrastructure Processing Units (IPUs)
Leverage Napatech’s Virtualized Data Plane
Software to Enable Breakthrough Performance for
Microservices-based Cloud Applications

Cloud service providers, including well-known companies such as Amazon, eBay,
Netflix, and Twitter, are increasingly implementing their applications as microservices
rather than traditional monolithic designs. While microservices-based software
architectures deliver important benefits such as accelerated deployment, simplified
debugging and improved scalability, they introduce significant networking
overheads so that parameters such as network latency have a major influence on
overall application performance and data center cost. By leveraging Intel® FPGA
Infrastructure Processing Units (IPUs) running virtualized data plane software from
Napatech, service providers can maximize the performance of their networking
infrastructure, enabling a level of performance otherwise unachievable while
minimizing their overall data center CAPEX and OPEX.

This solution brief analyzes the benefits delivered by an IPU solution for two
microservices-based use cases, a Publish-Subscribe (Pub-Sub) application and a
three-tier client-server application. In these use cases, the IPU solution enables a
50% increase in system throughput compared to a system configuration based on a
standard Network Interface Card (NIC).

Authors

Charlie Ashton
Senior Director of Business Development

Napatech

Rich Howell
Product Marketing Manager

Intel Corporation

Rather than implementing applications as traditional monolithic software systems,
cloud service providers are increasingly adopting a “microservices” architecture.
This modern software development approach involves breaking down a large
application into smaller, independent, loosely coupled services. Some of the benefits
of microservices include:

•	 Scalability: Microservices allow for better scalability, as individual services can
be scaled independently of each other. This means that developers can scale up
or down only the services that need it, without affecting the rest of the application.

•	 Flexibility: Microservices make it easier to make changes to a system because
individual services can be updated without affecting the entire application. This
makes it easier to adopt new technologies, experiment with different programming
languages and test new features.

•	 Fault isolation: Since each microservice is an independent component, if one
service fails it doesn’t affect the rest of the application. This means that
developers can quickly identify and fix problems without affecting the entire
system.

•	 Improved development speed: Microservices enable smaller, more focused
development teams to work independently on specific services. This speeds up
the development process and makes it easier to manage large, complex systems.

•	 Better fault tolerance: With microservices, it’s easier to build fault-tolerant
systems because each service can be designed to handle errors independently.
This means that the entire system is more resilient and less likely to fail.

•	 Improved testing: Since each microservice is independent, it’s easier to test
individual services. This means that developers can test services in isolation,
which makes it easier to find and fix bugs.

Microservices: A Modern Software Architecture

Solution Brief
Intel Infrastructure Processing Unit

Solution Brief | Intel IPUs Leverage Napatech’s Virtualized Data Plane Software to Enable Breakthrough Performance for Microservices-based Cloud 	
	 Applications

2

As one example, available reports (e.g. “System Design
Netflix – A Complete Architecture”) explain that Netflix
adopted Amazon Web Services (AWS) for managing their IT
infrastructure, replacing their existing monolithic programs
hosted on their own data servers with a microservices
architecture hosted in the public cloud. This enabled them to
deploy an extremely scalable IT infrastructure with support
for millions of service requests.

In the microservices-based architecture deployed by Netflix,
larger software programs are broken down into smaller
programs, or components, based on modularity. Every such
component has its own data encapsulation. Netflix is able to
scale its services rapidly, via horizontal scaling and workload
partitioning as part of the microservices-based architecture.
If any smaller software program stops working or starts
slowing down system requests, engineers can quickly isolate
that component and ensure uninterrupted service. The
microservices-based architecture also enables tracking of
every individual software component.

Networking Challenges for Microservices
In a microservices architecture, however, network latency
presents a significant challenge as virtualized services
implemented in containers or Virtual Machines (VMs)
communicate with each other over a virtualized network.
For example, microservices communicate with each other

frequently, which can result in a large amount of network
traffic. This increased network traffic can lead to network
congestion and increased latency, which can negatively impact
the performance of the system. Similarly, in a microservices
architecture, services often need to call other services to
complete a task and each network call adds additional latency
to the system. As the number of services and the complexity
of the system increases, the number of network calls also
increases, which can lead to significant latency challenges.
Finally, different microservices may use different network
protocols for communication. For example, one service may
use REST (REpresentational State Transfer) while another
service may use gRPC (Google Remote Procedure Call).
Translating between different network protocols can add
additional latency to the system.

Traditionally, a virtualized data plane is implemented
completely in software and many of its compute cycles are
consumed by running a virtual switch (vSwitch) which routes
network traffic between VMs. Since each vSwitch operation
requires a significant number of CPU cycles, this architecture
can introduce unacceptable latency into the system and
may also prevent the system from achieving the overall
performance or throughput required. At the same time, a CPU
that is heavily utilized running the virtual data plane will have
fewer cores available for running applications and services,
increasing the number of servers required to support the data
center workload, and increasing both CAPEX and OPEX.

Virtual
Machine

1

Virtual
Machine

2

Virtual
Machine

N-1

Virtual
Machine

N

Software Virtual Switch

Standard Ethernet
Adapter

Figure 1. 	 Multiple VMs interconnected with a software virtual switch running on a server configured with a standard
Ethernet adapter

2

https://www.geeksforgeeks.org/system-design-netflix-a-complete-architecture/
https://www.geeksforgeeks.org/system-design-netflix-a-complete-architecture/

Solution Brief | Intel IPUs Leverage Napatech’s Virtualized Data Plane Software to Enable Breakthrough Performance for Microservices-based Cloud 	
	 Applications

3

The Advantages of an IPU MIT Analysis
A more efficient and cost-effective system-level architecture
leverages an Intel FPGA IPU to offload the vSwitch from the
server CPU, freeing up the server CPU for running applications
and services.

The IPU, which replaces the standard Network Interface Card
(NIC) in the data center server, implements the vSwitch in
hardware, using a programmable FPGA (Field-Programmable
Gate Array) to run the data plane in conjunction with a
general-purpose CPU that runs the control plane. The vSwitch
presents an industry-standard application programming
interface (API) to the VMs, ensuring that no changes need to
be made to the VMs themselves when taking advantage of
this architecture.

The IPU-based architecture delivers three key benefits for a
data center running microservices-based applications:

•	 Ultra-low latency, which minimizes the delayed traffic
between the microservices;

•	 High performance, which maximizes the overall throughput
of the system and application;

•	 Optimum server CPU utilization with no server CPU cores
consumed by the vSwitch data plane, which minimizes the
total number of servers required for the overall workload,
also minimizing data center CAPEX and OPEX.

To quantify the benefits of vSwitch offload in real-world
scenarios, Massachusetts Institute of Technology (MIT)
analyzed the performance of two microservices-based
use cases, comparing the results from using a traditional
software-based vSwitch with those obtained using an Intel
IPU running virtualized data plane software from Napatech,
a leading provider of SmartNIC and IPU solutions. These two
use cases were a publish-subscribe “pub-sub” application
that uses message passing for data transfers across multiple
tiers and a three-tier TCP application comprising a web server,
in-memory cache, and back-end database.

The results of this benchmarking initiative are documented in
the paper “Microservice Benchmarking on Intel IPUs running
Napatech Software” published by MIT.

Virtual
Machine

1

Virtual
Machine

2

Virtual
Machine

N-1

Virtual
Machine

N

Offloaded Virtual Switch

Infrastucture Processing Unit IPU

Figure 2. 	 High-performance system architecture in which multiple VMs are interconnected with an offloaded virtual
switch running on an IPU

3

http://people.csail.mit.edu/delimitrou/papers/2022.intel.ipu.pdf
http://people.csail.mit.edu/delimitrou/papers/2022.intel.ipu.pdf

Solution Brief | Intel IPUs Leverage Napatech’s Virtualized Data Plane Software to Enable Breakthrough Performance for Microservices-based Cloud 	
	 Applications

4

Pub-sub Application Performance
A pub-sub application, short for “publish-subscribe
application,” is a messaging pattern commonly used
in distributed systems to facilitate communication and
coordination between different components or services. The
pub-sub pattern allows for asynchronous and decoupled
communication, where senders of messages, known as
publishers, do not need to know the specific recipients,
known as subscribers. Pub-sub applications are applicable to
use cases such as:

•	 Seating reservation systems that create a floor plan,
assign seats to it, and then manage the live seat-booking
events. As clients buy tickets, the pub-sub system
updates the floor plan everywhere in real time and keeps
the distributed cache system in sync. Clients never end up
requesting a seat only to find out someone had bought it
while they were still in the browsing/shopping phase.

•	 Educational tools that allow students to participate in
a classroom via a web-based app, where clients often
encounter issues such as unreliable WiFi or unpredictable
cellular networks. The pub-sub system recovers its
connection when they rejoin the network and is able to
handle rapid changes in the number of online participants.

Infrastucture Processing Unit IPU

Open vSwitch

Infrastucture Processing Unit IPU

Open vSwitch

Client

Client

Server 1 Server 2

Tier 1

Tier 1

Tier 2

Tier 2

Tier 3

Tier 3

Tier 4

Tier 4

Tier 5

Tier 5

•	 Financial applications such as the distribution of market
data including stock prices, market indices, trade data, and
order book updates to subscribers within an organization.

•	 Internet of Things (IoT) systems, where pub-sub
facilitates communication between numerous IoT devices
and enables efficient data dissemination. Sensors publish
data, then subscribers can receive and process that data
in real-time.

For this analysis, MIT evaluated a five-tier chain topology
developed with a pub-sub communication model from
Dapr, which is a portable, event-driven runtime that
enables developers to build resilient, stateless and
stateful applications that run both on the cloud and edge,
while supporting a diversity of languages and developer
frameworks. Each tier performs CPU-intensive computation
for a user-specified amount of time, before broadcasting its
output to the downstream tier.

Within the five-tier pub-sub application, the placement
of services across the two OVS-enabled servers ensures
that dependent services are running on different physical
machines, so that all traffic between tiers passes across the
IPUs, when enabled.

Figure 3. 	 Traffic flow in the IPU-offloaded 5-tier pub-sub application

4

https://docs.dapr.io/

Solution Brief | Intel IPUs Leverage Napatech’s Virtualized Data Plane Software to Enable Breakthrough Performance for Microservices-based Cloud 	
	 Applications

5

When offload is disabled and considering tail (i.e. worst-
case) latency, the application starts to saturate at 90kQPS,
as indicated by the inflection point in the graph. Beyond
that load level, the system can no longer efficiently keep up
with requests, most likely due to packet drops that result in
TCP retransmissions. When offload is enabled, however, the
system is still keeping up with requests at a load of 140kQPS,
the maximum rate used in this test, indicating that the IPU
enables a 50% increase in throughput while maintaining
acceptable tail latency.

This represents a significant improvement in system capacity,
resulting in savings of 30-40% in both total server cost and
energy consumption.

In a three-tier TCP application, the communication between
these tiers is facilitated using the TCP protocol. TCP
ensures reliable and ordered delivery of data between the
tiers, providing a connection-oriented and stream-based
communication mechanism. By separating the application
into these three tiers, the three-tier TCP architecture
allows for modularity, scalability, and easier maintenance
of the application. Each tier can be developed and scaled
independently, facilitating flexibility and reusability of
components.

MIT analyzed the performance of the pub-sub system both with and without the IPU-based offload, measuring the messaging
latency across varying loads which are expressed as thousands of queries per second (kQPS).

Figure 4. 	 Latency and throughput improvements with IPU offload for 5-tier Pub-sub application

Three-tier TCP Application Performance
A three-tier TCP (Transmission Control Protocol) application
refers to a software architecture design that divides an
application into three logical layers or tiers, each responsible
for specific functions. These tiers are typically referred to as
the presentation tier, application tier, and data tier. The TCP
protocol is used for communication between these tiers.

•	 Presentation Tier: Also known as the user interface (UI)
tier, this layer is responsible for presenting the application’s
information to users and receiving their inputs. It deals
with graphical user interface (GUI) components, such as
web pages, forms, or desktop interfaces. The presentation
tier communicates with the application tier to retrieve or
update data as necessary.

•	 Application Tier: The application tier contains the
business logic and processing logic of the application. It
handles the core functionality and performs tasks such
as data validation, business rules enforcement, and
application-specific operations. This tier processes the
requests from the presentation tier and communicates
with the data tier to retrieve or store data.

•	 Data Tier: The data tier, also known as the data access
layer or database tier, is responsible for managing the
storage and retrieval of data. It handles interactions with
the database systems, such as querying and updating
data. The data tier receives requests from the application
tier and returns the requested data or performs the
necessary data modifications.

5-tier Pub-Sub Dapr App

No Offload (tail)

Offload (tail)

Approx. 50%
Throughput increase

La
te

nc
y

(m
s)

Load (kQPS)

1400

1200

1000

800

600

400

200

0
10 20 30 40 50 60 70 80 90 100 110 120 130 140

5

Solution Brief | Intel IPUs Leverage Napatech’s Virtualized Data Plane Software to Enable Breakthrough Performance for Microservices-based Cloud 	
	 Applications

6

For this analysis, MIT evaluated a three-tier application with NGINX as the front-end web server, Memcached as the in-memory
caching tier, and MongoDB as the back-end database with persistent storage. Clients interact with NGINX, which checks if a key-
value pair is cached in Memcached and, if so, returns the value to the client. If not, NGINX interfaces with MongoDB to fetch the
output and additionally cache it in memcached.

MIT analyzed the performance of the three-tier TCP application both with and without the IPU-based offload, measuring the
messaging latency across varying loads which, as in the previous example, are expressed as thousands of queries per second
(kQPS).

When offload is disabled and considering tail (i.e. worst-case) latency, the application starts to saturate at approximately 17
kQPS, as indicated by the inflection point in the graph. Beyond that load level, the system can no longer efficiently keep up with
requests, most likely due to packet drops that result in TCP retransmissions. When offload is enabled, however, saturation does
not start until a load of 26kQPS, indicating that the IPU enables a 53% increase in throughput while maintaining acceptable
tail latency.

Like the previous example, this represents a significant improvement in system capacity, resulting in savings of 30-40% in both
total server cost and energy consumption.

Infrastucture Processing Unit IPU

Open vSwitch

Infrastucture Processing Unit IPU

Open vSwitchServer 1 Server 2

Client

Figure 5. 	 Traffic flow in the IPU-offloaded 3-tier TCP application

Figure 6. 	 Latency and throughput improvements with IPU offload for 3-tier TCP application

3-tier App (NGINX-Memcached-MongoDB)

No Offload (tail)

Offload (tail)

La
te

nc
y

(m
s)

Load (kQPS)

1000

900

800

700

600

500

400

300

200

100

0
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Approx. 50% increase

6

https://www.nginx.com/
https://memcached.org/
https://www.mongodb.com/

Solution Brief | Intel IPUs Leverage Napatech’s Virtualized Data Plane Software to Enable Breakthrough Performance for Microservices-based Cloud 	
	 Applications

The system configuration used by MIT for microservices
benchmarking was as follows:

•	 Two Inspur dual-socket servers, each featuring an
Intel® Xeon® Gold 6338 Processor with 48MB cache,
running at 2.0 GHz with 3.2 GHz turbo speed. Each
server was configured with 512GB memory, a 480GB
boot drive, dual 1.6TB P6410 NVMe storage modules
and one 10G Intel® Ethernet Controller XL710 NIC.

•	 In addition to the standard NIC, each server was
configured with one Intel IPU adapter C5000X with
dual 10/25G SFP28 ports and a PCIe 3.0 host interface,
based on an Intel® Stratix® FPGA and Intel® Xeon® D
System-on-Chip (SoC).

•	 Each IPU was running the Link-Virtualization 4.3.3
software from Napatech, providing an offloaded
and accelerated virtualized data plane including
functions such as Open vSwitch (OVS), VirtIO support,
live migration, VM-to-VM mirroring, VLAN/VxLAN
encapsulation/decapsulation, Q-in-Q, RSS load
balancing, link aggregation and Quality of Service
(QoS).

Summary For more information
Microservices-based software architectures deployed by
cloud service providers deliver important benefits such as
accelerated deployment, simplified debugging, and improved
scalability. However, they introduce significant networking
overheads, so that parameters such as network latency have
a major influence on overall application performance and
data center cost.

By leveraging Intel FPGA IPUs running virtualized data plane
software from Napatech, service providers can maximize the
performance of their networking infrastructure, enabling
a level of performance otherwise unachievable while
minimizing their overall data center CAPEX and OPEX.

An analysis performed by MIT demonstrated that in two typical
microservices-based use cases, this IPU solution enables a
50% increase in system throughput compared to a system
configuration based on a standard Network Interface Card
(NIC). This enables service providers to decrease the number
of servers required to support their total workload for these
use cases by approximately one-third, driving a significant
reduction in server CAPEX, OPEX, and energy efficiency.

Detailed information on the Intel IPU Platfrom C5000X is
available here and details of Napatech’s Link-Virtualization
software for this platform are here. The MIT paper with a full
performance analysis of the two microservices use cases is
here.

Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Your costs and results may vary.

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

SS-1161-1.0

DDR4
16GB

DDR4
4GB

PCIe
3.0 x8 (x16 physical)

10/25G
SFP28
10/25G
SFP28

7

https://www.intel.com/content/www/us/en/products/details/network-io/ipu/c5000x-pl-platform.html
https://www.napatech.com/products/c5010x-smartnic-virtualization/
http://people.csail.mit.edu/delimitrou/papers/2022.intel.ipu.pdf
http://www.Intel.com/PerformanceIndex

